4,919 research outputs found

    Symmetry breaking and strong coupling in planar optical metamaterials

    Get PDF
    We demonstrate narrow transmission resonances at near-infrared wavelengths utilizing coupled asymmetric split-ring resonators (SRRs). By breaking the symmetry of the coupled SRR system, one can excite dark (subradiant) resonant modes that are not readily accessible to symmetric SRR structures. We also show that the quality factor of metamaterial resonant elements can be controlled by tailoring the degree of asymmetry. Changing the distance between asymmetric resonators changes the coupling strength and results in resonant frequency tuning due to resonance hybridization

    Environmental urbanization assessment using gis and multicriteria decision analysis: a case study for Denizli (Turkey) municipal area

    Get PDF
    In recent years, life quality of the urban areas is a growing interest of civil engineering. Environmental quality is essential to display the position of sustainable development and asserts the corresponding countermeasures to the protection of environment. Urban environmental quality involves multidisciplinary parameters and difficulties to be analyzed. The problem is not only complex but also involves many uncertainties, and decision-making on these issues is a challenging problem which contains many parameters and alternatives inherently. Multicriteria decision analysis (MCDA) is a very prepotent technique to solve that sort of problems, and it guides the users confidence by synthesizing that information. Environmental concerns frequently contain spatial information. Spatial multicriteria decision analysis (SMCDA) that includes Geographic Information System (GIS) is efficient to tackle that type of problems. This study has employed some geographic and urbanization parameters to assess the environmental urbanization quality used by those methods. The study area has been described in five categories: very favorable, favorable, moderate, unfavorable, and very unfavorable. The results are momentous to see the current situation, and they could help to mitigate the related concerns. The study proves that the SMCDA descriptions match the environmental quality perception in the city. © 2018 Erdal Akyol et al

    Compliant Metamaterials for Resonantly Enhanced Infrared Absorption Spectroscopy and Refractive Index Sensing

    Get PDF
    Metamaterials can be designed to operate at frequencies from the visible to the mid-IR, making these structures useful for both refractive index sensing and surface-enhanced infrared absorption spectroscopy. Here we investigate how the mechanical deformation of compliant metamaterials can be used to create new types of tunable sensing surfaces. For split ring resonator based metamaterials on polydimethylsiloxane we demonstrate refractive index sensing with figures of merit of up to 10.1. Given the tunability of the resonance of these structures through the infrared after fabrication, they are well suited for detection of the absorption signal of many typical vibrational modes. The results highlight the promise of postfabrication tunable sensors and the potential for integration

    Highly Strained Compliant Optical Metamaterials with Large Frequency Tunability

    Get PDF
    Metamaterial designs are typically limited to operation over a narrow bandwidth dictated by the resonant line width. Here we report a compliant metamaterial with tunability of Δλ ~ 400 nm, greater than the resonant line width at optical frequencies, using high-strain mechanical deformation of an elastomeric substrate to controllably modify the distance between the resonant elements. Using this compliant platform, we demonstrate dynamic surface-enhanced infrared absorption by tuning the metamaterial resonant frequency through a CH stretch vibrational mode, enhancing the reflection signal by a factor of 180. Manipulation of resonator components is also used to tune and modulate the Fano resonance of a coupled system

    Divide-and-conquer: Approaching the capacity of the two-pair bidirectional Gaussian relay network

    Get PDF
    The capacity region of multi-pair bidirectional relay networks, in which a relay node facilitates the communication between multiple pairs of users, is studied. This problem is first examined in the context of the linear shift deterministic channel model. The capacity region of this network when the relay is operating at either full-duplex mode or half-duplex mode for arbitrary number of pairs is characterized. It is shown that the cut-set upper-bound is tight and the capacity region is achieved by a so called divide-and-conquer relaying strategy. The insights gained from the deterministic network are then used for the Gaussian bidirectional relay network. The strategy in the deterministic channel translates to a specific superposition of lattice codes and random Gaussian codes at the source nodes and successive interference cancelation at the receiving nodes for the Gaussian network. The achievable rate of this scheme with two pairs is analyzed and it is shown that for all channel gains it achieves to within 3 bits/sec/Hz per user of the cut-set upper-bound. Hence, the capacity region of the two-pair bidirectional Gaussian relay network to within 3 bits/sec/Hz per user is characterized.Comment: IEEE Trans. on Information Theory, accepte

    Simulation of associative learning with the replaced elements model

    No full text
    Associative learning theories can be categorised according to whether they treat the representation of stimulus compounds in an elemental or configural manner. Since it is clear that a simple elemental approach to stimulus representation is inadequate there have been several attempts to produce more elaborate elemental models. One recent approach, the Replaced Elements Model (Wagner, 2003), reproduces many results that have until recently been uniquely predicted by Pearce’s Configural Theory (Pearce, 1994). Although it is possible to simulate the Replaced Elements Model using “standard” simulation programs the generation of the correct stimulus representation is complex. The current paper describes a method for simulation of the Replaced Elements Model and presents the results of two example simulations that show differential predictions of Replaced Elements and Pearce’s Configural Theor

    Analysis of loop heat pipe performance under varying wick load

    Get PDF
    Loop heat pipes (LHP) are heat transfer devices used to enhance cooling of small spaces and basically consist of sealed tubes connecting a heat source, the evaporator, whose major part is a porous wick, with a condenser that operates as heat sink. In this paper we analyse the effect of curvature of the liquid vapor interface upon the vapor pressure within wick pores. We show how this effect affects start-up by requiring a difference between wick and condenser temperatures as higher as wick pore width becomes smaller. We analysed also transient operation and found that idealy LHP are self-adjusting systems that tend to stable operation. We present a formula to describe the transient regime. The analysis provides also optimization of wick pore width for maximum heat transfer. Optimal pore width is shown to vary with temperature difference between wick and condenser. It is envisaged how this feature may help in LHP design

    g_phi-pion-gamma coupling constant in light cone QCD sum rules

    Full text link
    The coupling constant of g_phi-pion-gamma decay is calculated using light cone QCD sum rules. A comparison of our result with the ones existing in the literature is presented.Comment: 9 pages, 2 figure

    Numerical Particle Transport in Partitioned Room.

    Get PDF
    In this work, we solved particle transport in a two-zone enclosure numerically with different airflow pattems, particle properties and algo source positions. A discrete trajectory was employed for the particIe movement. Five isotropic line sources which are alI taken at different positions oftne same zone were festejo It was observed that for alI airflow pattems, residence time increases with decreasing size of particIes. Increase in size and mass increases the chaTIceof particles to get deposited auto the fIoor. Source locations should be chosen in the main stream of the fIow so that particles convect fast through and not contribute indoor polIutant concentration. ConcIusions were drawn for every numerical experiment in arder to show tendencies of particle dynamics within the encIosure
    • …
    corecore